
(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 4, 2011 

54 | P a g e  

http://ijacsa.thesai.org/ 

FPGA Based Cipher Design & Implementation of 

Recursive Oriented Block Arithmetic and Substitution 

Technique (ROBAST) 

Rajdeep Chakraborty 

Dept. of Computer Science & Engineering, 

Netaji Subhash Engineering College, Garia, Kolkata-700152, 

West Bengal, India. 
 

Abstract - Proposed FPGA based technique considers a message 

as a binary string on which ROBAST is applied. A block of n-bits 

is taken as an input stream, where n ranges from 8 to 256 – bit, 

then ROBAST is applied in each block to generate intermediate 

stream, any one intermediate stream is considered as a cipher 

text. The same operation is performed repeatedly on various 

block sizes. It is a kind of block cipher and symmetric in nature 

hence decoding is done in similar manner. This paper also 

presents an efficient hardware realization of the proposed 

technique using state-of-the-art Field Programmable Gate Array 

(FPGA). The technique is also coded in C programming language 

and Very High Speed Integrated Circuit Hardware Description 

Language (VHDL). Various results and comparisons have been 

performed against industrially accepted RSA and TDES. A 

satisfactory results and comparisons are found. 

Keywords – VHDL; FPGA; RTL; Block Cipher; Session key and 

Private Key; Cryptography; Symmetric/Private key cryptosystem. 

I. INTRODUCTION 

Transmission of sensitive electronic information [7] from 
and all around the globe has emphasizes the need of fast & 
secure network [2,3,5]. For achieving this secrecy, integrity and 
confidentiality, cryptographic techniques [1,2,3,14] are the 
tools. To achieve high performance it is highly recommended 
to implement the cryptographic techniques in hardware. A 
promising solution that combines high flexibility with the 
speed and physical security of Application Specific Integrated 
Circuits (ASIC) [7,8,9,10] is the implementation of 
cryptographic technique on state-of-the-art re-configurable 
devices such as Field Programmable Gate Array (FPGA) 
[7,8,9,10]. Sub-Section A, discussed the framework of the 
scheme along with private/symmetric key cryptosystem [4,7]. 

Private Key / Symmetric Cryptosystem  

The aim is to develop an efficient crypto hardware. The 
figure 1 illustrates the conventional encryption model [2,7]. 
The main objective is to convert the intelligent plain text 
[2,3,4,5,7], X, to a non-sense cipher text [2,3,4,5,7], Y, using a 
single key [2,3,4,5,7], K. This process is the 
encoding/encryption [1,2,14], E, and the decoding/decryption  

 

JK Mandal, Professor, 

Dept. of Computer Science & Engineering, 

University of Kalyani, Nodia, West Bengal, India. 
 

 

[1,2,14], D, is performed similarly in case of symmetric or 
the opposite in other private key algorithms. The Session Key 
[1,2,14], K must be sent through a secured channel and cipher 
text, Y, may be sent through unsecured channel. Cryptanalyst 
[1,2,7,14] are the entity who attempts to discover plain text, X, 
and or key, K. 

The Section II illustrates the principle of ROBAST, Section 
III gives the key generation process, result and simulations are 
given in Section IV, A brief analysis is given in Section V, 
Section VI draws the conclusion and finally the list of the 
references are given. 

II. PRINCIPLE OF ROBAST 

The message can be considered as blocks of bits with 
different block size [1,7,14] like 8, 16, 32, 64, 128 & 256 bits. 
The rules to be followed for generating a cycle are as follows: 

1. Consider any source stream [1,2,7,14] containing finite 
number of bits (where N=2n, n =3 to 8) and divide it into 
two equal parts. 

2. Make the source stream into paired form so that a pair 
can be used for the operation. 

3. Perform the modulo-4 addition [6,13] between the first 
and second pair, second and third pair, and so on of the 
source stream, to obtain the first intermediate block. 

4. The same process is repeated recursively [7,11,12] 
between second and first, third and second, fourth and 
third and so on of the source stream, to generate the next 
intermediate block. 

This process is repeated until the source stream is 
generated. After a finite number of iterations source stream is 
regenerated. So, decryption is basically the iteration of the 
same process. In this proposed technique the modulo addition 
with substitution and permutation is given but to enhance the 
security further other arithmetic operations has also been 
implemented in this technique. Sub-Section A illustrates the 
scheme numerically and that of Sub-Section B outlines the 
implementation issues. 

 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 4, 2011 

55 | P a g e  

http://ijacsa.thesai.org/ 

 
Figure 1: Model of Conventional Cryptosystem 

A. Example 

Consider the block S = 10010011 of size 8 bits. The Flow 
diagram to show how positions of the bits of S and the different 
intermediate blocks can be reoriented with the key values to 
complete the cycle is shown in figure 2. In this diagram, each 
arrow indicates positional orientation of a bit during iteration. 
Therefore the final cipher text is S‟=00011001. 

B. Implementation of ROBAST 

The technique executes modulo addition between two 
blocks, the first iteration performs in forward basis and then 
backward operation is performed. Next, final permutation is 
done to get the final cipher text. This technique has been 
implemented in C [11,12,13] and then feasibility study has 
been performed. Finally, FPGA [8,9,10] based implementation 
has been done in VHDL [8,9,10]. In both implementation, the 
technique takes input from file as a source stream and 
encryption is performed. The cipher text generated is finally 
written in another file [7,10,11,12]. The data blocks (8, 16, 32, 
64, 128 and 256-bits) from the input file have been stored in 
array. Then encryption is performed and also stored in array. 
The reading and writing of data from and in file is based on 8-
bit ASCII codes [7,11,12]. XilinX [8,9,10] software has been 
used for writing codes in VHDL. The encryption/decryption 
entity input bit vector (16-bit), output bit vector (16-bit), key 
bit vector (8-bit) and EN_DN signal. If EN_DN = 1 then 
encryption is performed else decryption is performed. Figure 3 
gives the main ROBAST entity coded in VHDL. 

The above operations discussed are substitute technique 
[6,7,13] followed by permutation technique [6,7,13] has been 
performed by orientation of bits based on the session key. 
Therefore, these resultant blocks of stream can be considered as 
cipher text. 

III. THE KEY GENERATION PROCESS 

The key generation process depends on block size, iteration 
of each block and final permutation performed. Thus, in the 
proposed scheme, eight rounds have been considered, each for 
2, 4, 8, 16, 32, 64, 128, and 256-block size. As mentioned in 
Section II, each round is repeated for a finite number of times 
and the number of iterations will form a part of the encryption-
key. Although the key may be formed in many ways, for the 
sake of brevity it is proposed to represent the number of 
iterations in each round by a 16-bit binary string. The binary 
strings are then concatenated to form a 128-bit key for a 
particular key. Example in Sub-Section A illustrates the key 
generation process. Sub-Section B describes the modulo 
addition, which is an important operation in the technique and 
should be taken into account while forming the session key. 

 
Figure 2: Flow Diagram of proposed technique, ROBAST 

library std; 

library ieee; 

use ieee.std_logic_arith.all; 

use work.pack.all; 

use std.textio.all; 

use ieee.std_logic_TEXTIO.all; 

entity ROBAST_VHDL is 

 

Port ( input_bits : in  BIT_VECTOR (16 downto 1); 

output_bits : out  BIT_VECTOR (16 downto 1); 

key_bits : in  BIT_VECTOR (8 downto 1); 

EN_DN : in  BIT); 

end ROBAST_VHDL; 

 

architecture Behavioral of ROBAST_VHDL is 

 

begin 

 

process(EN_DN) 

 

variable varin_bits,varout_bits: bit_vector(16 downto 1); 

 

begin 

 

if (EN_DN='1')then 

varin_bits:=input_bits; 

AA: ROBAST_Encryption(varin_bits,key_bits,varout_bits); 

output_bits<=varout_bits; 

else 

BB: ROBAST_Decryption(varin_bits,key_bits,varout_bits); 

output_bits<=varout_bits; 

end if; 

 

end process; 

 

end Behavioral; 

 
Figure 3: ROBAST Entity and its function 

A. Example 

Consider a particular session where the source file is 
encrypted using iterations for block sizes 2, 4, 8, 16, 32, 64, 
128, and 256 bits, respectively. Table I shows the 
corresponding binary value [7,8,10,13] for the number of 
iterations in each round. The binary strings are concatenated 
together to form the 128-bit binary string: 

110000110110010111000010110011101011111100110110
10101101100110111011010010101010000100001110000100
000010101100100000000001001000. 

 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 4, 2011 

56 | P a g e  

http://ijacsa.thesai.org/ 

This 128-bit binary string will be the encryption-key for 
this particular session. During decryption, the same key is 
taken to iterate each round of modulo-subtraction for the 
specified number of times and reverse permutation. 

B. Modulo Addition 

An alternative method for modulo addition is proposed here 
to make the calculations simple. The need for computation of 
decimal equivalents of the blocks is avoided here since it may 
generate large decimal integer values for large binary blocks. 
The method proposed here is just to discard the carry out of the 
MSB after the addition to get the result. For example, if we add 
1101 and 1001 we get 10110. In terms of decimal values, 
13+9=22. Since the modulus of addition is 16 (24) in this case, 
the result of addition should be 6 (22-16=6). Discarding the 
carry from 10110 is equivalent to subtracting 10000 (i.e. 16 in 
decimal). So the result will be 0110, which is equivalent to 6 in 
decimal. The same is applicable to any block size. 

IV. RESULTS AND SIMULATION 

Any cryptographic technique is to be accepted, a 
satisfactory results are very much required. Proposed technique 
has been tested for feasibility both in terms of algorithmic 
parameters and cryptographic parameters. Sub-Section A gives 
the time complexity results [7,11,12,13], Sub-Section B tests 
for non-homogeneity using Chi-Square values [1,6,14,15] and 
degree of freedom [1,6,14,15], Sub-Section C illustrates the 
frequency distribution [1,6,14,15] of ASCII characters 
[7,11,12], Sub-Section D test for cryptanalysis using avalanche 
ratio [2,3,4,5] and finally Sub-Section E gives the FPGA-based 
simulation results [8,9,10]. All these results are against well 
known and industrially accepted RSA and TDES 
[1,2,3,4,13,14]. For the shake of brevity 20 (twenty) sample 
files of different types has been taken for these results.  The 
Section V briefly analyses all these results. 

A. Time Complexity 

Time complexity is based on encryption time and 
decryption time [1,2,14]. Encryption time is the time required 
to encrypt a source file and decryption time is the time to 
decrypt the cipher text file to get the original file. Table II gives 
the time complexities and Figure 4 illustrates the same. This 
test is in terms of efficient algorithmic parameter. 

B. Tests for Non-Homogeneity 

Test for non-homogeneity has also been done using Chi-
Square value and degree of freedom; this is one of the 
important cryptographic parameters. Chi square value is the 
statistical value between source file and encrypted files, which 
gives the difference. Degree of freedom in the character 
distribution of the above said files. Table III gives the Chi-
Square value and Figure 5 illustrates the same. 

C. Frequency Distribution 

The frequency distribution is the distribution of the all-256 
ASCII characters in the respective files. This is also a 
cryptographic parameter, which measures the degree of 
cryptanalysis. Figure 6 illustrates the various frequency 
distribution results found after implementation of respective 
algorithms/techniques. 

D. Avalanche Ratio 

The avalanche ratio is the ratio between the modified 
results to the original result. The avalanche ratio is obtained by 
modifying 2-3 bits/bytes in the encryption key as well as in 
source files. It‟s a strong cryptographic parameter and this may 
be conceptualize with the avalanche occurs in hill area. Table 
IV gives the avalanche ratio values of ROBAST. 

TABLE I.  REPRESENTATION OF NUMBER OF ITERATIONS IN EACH 

ROUND BY BITS 

Round  
Block Size Number of Iterations 

Decimal Binary 

8. 256 50021 1100001101100101 

7. 128 49870 1100001011001110 

6. 64 48950 1011111100110110 

5. 32 44443 1010110110011011 

4. 16 46250 1011010010101010 

3. 8 4321 0001000011100001 

2. 4 690 0000001010110010 

1. 2 72 0000000001001000 

Figure 4 (A): Encryption Time 

 

Figure 4 (B): Decryption Time 

 

Figure 5: Chi-Square Analysis Graph 

Encryption Time Analysis

0
0.1

0.2
0.3
0.4

0.5
0.6

0.7
0.8

1
8

8
1

1
3
1

1
5
1

2
0
7

2
4
5

3
0
3

3
8
9

4
2
1

4
7
3

5
0
6

5
6
7

6
2
4

6
7
9

7
2
6

7
4
2

8
1
7

9
1
4

9
3
2

1
0
5
6

File Size (in KB) -->

E
n

c
ry

p
ti

o
n

 T
im

e
 (

in
 

S
e
c
o

n
d

s
)

Encryption Time of ROBAST Encryption Time of TDES Encryption Time of RSA

Decryption Time Analysis

0

2

4

6

8

10

1
8

8
1

1
3
1

1
5
1

2
0
7

2
4
5

3
0
3

3
8
9

4
2
1

4
7
3

5
0
6

5
6
7

6
2
4

6
7
9

7
2
6

7
4
2

8
1
7

9
1
4

9
3
2

1
0
5
6

File Size (in KB) -->

D
e
c
ry

p
ti

o
n

 T
im

e
 (

in
 

S
e
c
o

n
d

s
)

Decryption Time of ROBAST Decryption Time of TDES Decryption Time of RSA

Chi-Square Analysis Graph

0

2000000

4000000

6000000

8000000

10000000

12000000

1
8

8
1

1
3
1

1
5
1

2
0
7

2
4
5

3
0
3

3
8
9

4
2
1

4
7
3

5
0
6

5
6
7

6
2
4

6
7
9

7
2
6

7
4
2

8
1
7

9
1
4

9
3
2

1
0
5
6

File Size (in KB) -->

C
h

i-
S

q
u

a
re

 V
a
lu

e
s
 

Chi-Square of ROBAST Chi-Square of TDES Chi Square of RSA



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 4, 2011 

57 | P a g e  

http://ijacsa.thesai.org/ 

TABLE II.  TIME COMPLEXITY ANALYSIS

 Figure 6 (A): Frequency distribution of Source File 

 Figure 6 (B): Frequency distribution of ROBAST encrypted file 

 

Figure 6 (C): Frequency Distribution of RSA encrypted file 

 

Figure 6 (D): Frequency distribution of Triple-DES encrypted file 

E.  FPGA-Based Simulation Result 

This Section gives some of the results found after 
implementing the proposed technique in VHDL. This code has 
been simulated and synthesized in XilinX. The main objective 
is to find an efficient FPGA-based cryptographic technique for 
implementation in embedded systems. The Figure 7 gives the 
RTL schematic [8,9,10] of the proposed technique and the 
Figure 8 gives the chip diagram for Spartan 3E [8,9,10]. 

 

 

Figure 7: RTL Schematic 

 

Serial no. File Name File Size (in 

Kilo Bytes) 

Encrypted time (in second) Decryption time (in second) 

ROBAST TDES RSA ROBAST TDES RS

A 

01 Poppy.jpg 18 0.00 0.01 0.01 0.01 0.02 0.15 

02 07.jpg 81 0.01 0.01 0.06 0.02 0.03 0.71 

03 Sqmapi.dll 131 0.02 0.03 0.07 0.03 0.03 1.15 

04 Jview.exe 151 0.03 0.05 0.11 0.03 0.06 1.36 

05 Gender.txt 207 0.04 0.06 0.12 0.04 0.07 1.61 

06 Pod.exe 245 0.04 0.07 0.12 0.04 0.08 1.86 

07 Devices.txt 303 0.06 0.07 0.20 0.05 0.09 2.71 

08 Dtliteui.dll 389 0.07 0.08 0.25 0.06 0.10 3.34 

09 Vssapi.dll 421 0.08 0.09 0.28 0.07 0.11 3.73 

10 Names.txt 473 0.08 0.10 0.32 0.08 0.11 4.25 

11 Photo000.jpg 506 0.09 0.10 0.34 0.08 0.13 4.54 

12 Uninst.exe 567 0.10 0.11 0.36 0.10 0.14 4.67 

13 Iexplore.exe 624 0.10 0.11 0.40 0.11 0.14 5.43 

14 Cordic.pdf 679 0.11 0.12 0.45 0.11 0.16 6.10 

15 Iedvtool.dll 726 0.12 0.13 0.46 0.12 0.17 6.40 

16 Guide.pdf 742 0.13 0.15 0.51 0.12 0.18 6.67 

17 Setuplog.txt 817 0.14 0.16 0.54 0.14 0.18 7.34 

18 Adobearm.exe 914 0.15 0.18 0.57 0.15 0.19 7.68 

19 De10.txt 932 0.16 0.19 0.64 0.16 0.20 8.39 

20 Omat.doc 1056 0.18 0.21 0.67 0.19 0.23 8.92 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 4, 2011 

58 | P a g e  

http://ijacsa.thesai.org/ 

TABLE III.  CHI-SQUARE AND DEGREE OF FREEDOM VALUES 

Serial no. File Name File Size (in 

Kilo Bytes) 

Chi-Square Value Degree of Freedom 

ROBAST TDES RSA ROBAST TDES RSA 

01 Poppy.jpg 18 6472 4572 5668 253 255 255 

02 07.jpg 81 4407 2943 2654 253 255 255 

03 Sqmapi.dll 131 560357 890752 447984 253 255 255 

04 Jview.exe 151 3307374 1847893 685963 253 255 255 

05 Gender.txt 207 2679799 3426290 3318506 253 93 84 

06 Pod.exe 245 8495675 5810912 694410 253 255 255 

07 Devices.txt 303 3131296 3220112 2667664 254 66 88 

08 Dtliteui.dll 389 9559993 6190253 2216429 253 255 255 

09 Vssapi.dll 421 3102369 1980059 906300 253 255 255 

10 Names.txt 473 2590855 4044603 3896171 253 88 90 

11 Photo000.jpg 506 38465 31719 30353 253 255 255 

12 Uninst.exe 567 776122 512668 342450 253 255 255 

13 Iexplore.exe 624 3799155 2043250 588049 253 255 255 

14 Cordic.pdf 679 1065255 684198 686392 253 255 255 

15 Iedvtool.dll 726 3422000 2192824 1845040 253 255 255 

16 Guide.pdf 742 420469 320825 311524 253 255 255 

17 Setuplog.txt 817 6904009 6340148 5737525 253 255 255 

18 Adobearm.exe 914 2625926 2458497 1196585 253 255 255 

19 De10.txt 932 2043522 5194261 4407281 251 86 11 

20 Omat.doc 1056 1968558 1516848 1082800 253 255 255 

TABLE IV.  AVALANCHE RATIO OF ROBAST ENCRYPTED FILES 

Serial no. File Name File 

Size 

(in 

Kilo 

Bytes) 

Avalanche 

Ratio of 

ROBAST 

encrypted 

files (in %) 

01 Poppy.jpg 18 96.25 

02 07.jpg 81 99.69 

03 Sqmapi.dll 131 99.93 

04 Jview.exe 151 99.96 

05 Gender.txt 207 97.72 

06 Pod.exe 245 99.84 

07 Devices.txt 303 98.22 

08 Dtliteui.dll 389 99.97 

09 Vssapi.dll 421 99.98 

10 Names.txt 473 99.95 

11 Photo000.jpg 506 99.91 

12 Uninst.exe 567 99.98 

13 Iexplore.exe 624 99.99 

14 Cordic.pdf 679 99.70 

15 Iedvtool.dll 726 99.97 

16 Guide.pdf 742 99.56 

17 Setuplog.txt 817 99.56 

18 Adobearm.exe 914 99.98 

19 De10.txt 932 06.83 

20 Omat.doc 1056 99.73 

Average Avalanche Ratio 94.84 

The avalanche ratio is obtained by modifying 2-3 bits/bytes 

in the encryption key as well as source files  

V. ANALYSIS OF THE RESULTS 

Analyzing all the results presented in the result Section(s), 
following are the points obtained on the proposed technique: 

1. The encryption time and decryption time varies linearly 
with the file sizes. Also the time complexity of 
ROBAST is quite less than RSA, but it‟s slight less than 
TDES. 

2. Considering the Chi-Square values, the proposed 
technique, ROBAST, is most non-homogeneous than 
that of RSA and TDES. But, there is no substantial 

result found in terms of degree of freedom because all 
three (ROBAST, RSA, TDES) have almost same value. 

3. Result for the frequency distribution illustrates the 
ASCII characters are well distributed in ROBAST. The 
well distribution was also found for RSA and TDES. So, 
the frequency distribution result is at par with that found 
in Chi-Square and degree of freedom values. 

4. A very good result has been obtained in the avalanche 
ratio of the proposed technique. The average avalanche 
ratio is 94.84. So, cryptanalysis is quite difficult. 

5. The RTL diagram signifies that the proposed technique 
has been successfully implemented in VHDL and the 
same is illustrated for Spartan 3E FPGA. If we closely 
look at, there are 29 Look-Up-Tables (LUT s) [8,9] used 
for this technique. 

 

Figure 8: Spartan 3E Schematic 

Sub-Section A. gives the application of this proposed 
technique, ROBAST and along with future scope of work. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 4, 2011 

59 | P a g e  

http://ijacsa.thesai.org/ 

A. Application of ROBAST 

The following are some of the avenues of application for 
the proposed technique, ROBAST: - 

1. Since the proposed system is simple, fast and low power 
consumption based crypto solution, it can be used in 
various embedded systems. 

2. This technique may be used to develop electronic 
codebooks. 

3. It‟s can also be used to develop a private network and 
master-key-based applications. 

4. This proposed FPGA-based system may be used in 
hardware applications such as switch, gateways and 
routers. 

The FPGA implementation of Vertex series with increased 
block length and also with low computational complexity is the 
future scope of the work. 

VI. CONCLUSION 

The proposed technique given here is easily implemented in 
high-level language and in VHDL. This technique is very easy 
and it‟s implemented in FPGA-based systems, the goal of fast 
execution and strong cryptanalysis requirements are also 
obtained here. This technique can be fabricated in chip to be 
used in embedded systems. The main goal of the author(s) is to 
develop an efficient FPGA-based crypto hardware and this 
paper is the first step towards this. 

ACKNOWLEDGMENT 

The authors express their deep sense of gratitude to The 
Department of Computer Science and Engineering, Netaji 
Subhash Engineering College, Garia, Kolkata, West Bengal, 
India and The Department of Computer Science and 
Engineering, University of Kalyani, Kalyani, Nodia, West 
Bengal, India. 

REFERENCES 

 
[1] Rajdeep Chakraborty, Dr. J.K.Mandal, “A Microprocessor-based Block 

Cipher through Rotational Addition Technique (RAT)”, ICIT – 2006 18-
21 December, 2006, Bhubaneswar, INDIA.  

[2] W. Stallings, Cryptography and Network Security: Principles and 
Practices, Prentice Hall, Upper Saddle River, New Jersey, USA, Third 
Edition, 2003.  

[3] B. Schneier. Applied Cryptography. John Wiley & Sons Inc., New York, 
New York, USA, 2nd edition,1996.  

[4] U.S. Department of Commerce/National Institute of Standard and 
Technology. FIPS PUB 197, Specification for the Advanced Encryption 
Standard (AES), November 2001. Available at 
http://csrc.nist.gov/encryption/aes.  

[5] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of

 Applied Cryptography. CRC Press, Boca Raton, Florida, USA, 1997.  

[6] A.M. Goon, M.K. Gupta, B. Dasgupta, Fundamentals of Statistics, Vol. 
1, The World press Ltd.  

[7] Dictionary of Computers and Information Technology Terms, 1

st 

edition, 
low point, Kolkata, India. 

[8] FPGA- Based System Design by W. Wolf, Pearson Education.  

[9] Embedded Core Design with FPGA‟s by Z. Navavi, TMGH. 

[10] AVHDL: Premier by J. Bhasker, Pearson Education 

[11] Programming in C by Balaguruswamy, India.  

[12] Pointers in C by Y Kanitkar, India  

[13] The software cryptographic tools for educational purpose available at 
http://www.cryptool.com/ 

[14] S. Mal, J.K. Mandal, S. Dutta, “A Microprocessor Based Encoder for 
Secured Transmission”, Proceedings of the National Conference on 
Intelligent Computing on VLSI, Kalyani Govt. Engg. College, 16-17 
February, 2001, pp 164-169. 

[15] Number theory home page for secured key generations 
http://www.numbertheory.org/ntw/web.html 

[16] Pasha, A., & Gafoor, A. (2011). Transparent Data Encryption- Solution 
for Security of Database Contents. International Journal of Advanced 
Computer Science and Applications - IJACSA, 2(3), 25-28. 

[17] Meshram, C. (2010). Modified ID-Based Public key Cryptosystem using 
Double Discrete Logarithm Problem. International Journal of Advanced 
Computer Science and Applications - IJACSA, 1(6). 

[18] Nath, J. (2011). Advanced Steganography Algorithm using Encrypted 
secret message. International Journal of Advanced Computer Science 
and Applications - IJACSA, 2(3). 

AUTHORS PROFILE 

RAJDEEP CHAKRABORTY, born on 23rd August „ 1978, did his Bachelor 
of Engineering (B.E.) in Computer Science and Engineering (CSE) from 
Utkal University, Bhubaneswar, India at 2002, then he did his Master of 
Technology (M. Tech) in Information Technology (IT) from Sikkim 
Manipal University of Health Medical  and Technological Sciences 
(SMUHMTS), Gangtok, India at 2004, he is presently persuing PhD in 
Computer Science and Engineeing (CSE) from University of Kalyani, 
Kalyani, India, in the field of Cryptography. Presently he is assistant 
professor in the department of Computer Science and Engineering 
(CSE), Netaji Subhash Engineering College, Kolkata, India. He has 
almost 6 years of teaching and research expirence and the total number 
of his publication is eight, all in internatinal conferences and journals. 
The average makrs throughout his carrer is 71.0%. 

 
JK MANDAL did his M. Tech in Computer Science & Engineering at 

University of Calcutta, then did his PhD in CSE, at Jadavpur University 
in the field of Data Compression and Error Correction techniques. 
Presently he is professor in Computer Science and Engineering 
department, University of Kalyani, India. He is also a life member of 
Computer Society of India (CSI) since 1992 and life member of 
Cryptology Research Society India. Moreover, he is also serving as a 
dean, faculty of Engineering, Technology and Managemat, at University 
of Kalyani. The fields of his work are Network Security, Steganography, 
Remote Sensing, GIS application and Image Processing. He has 23 years 
of Teaching and Research Experience and seven scholars are awarded 
PhD and now eight scholars are pursuing PhD under his guidance. The 
total number of his publication is 140. 

 

http://csrc.nist.gov/encryption/aes
http://www.cryptool.com/
http://www.numbertheory.org/ntw/web.html

